ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Атомный подводный. Как работает атомная подводная лодка

Атомные подводные лодки

«Наутилус» – название первой в мире атомной подводной лодки сегодня известно всем военно-морским специалистам. Строительство силовой установки для нее («Марк-2») атомная промышленность США начала в 1954 году и завершила к концу декабря. С 17 января 1955 года «Наутилус» в течение шести дней проходил в море сложные, продолжительные испытания на больших скоростях, во время которых погружался свыше пятидесяти раз. За 84 часа лодка преодолела в подводном положении расстояние около 13 тысяч миль, превысив в десять раз рекорд дальности плавания в подводном положении и показав рекордную среднюю скорость в 16 узлов.

Советский Союз спустил на воду атомную субмарину значительно позже. Советские конструкторы предложили заложить подобный корабль еще в конце 1940-х. Но курировавший советскую атомную промышленность Берия решил по-другому: сначала бомба, потом все остальное. Сталин поддержал его. Средств на две ядерные программы у страны не было.

Решение о разработке атомной подводной лодки в СССР было принято лишь в сентябре 1952 года. Закладка опытной торпедной АПЛ (проекта 627) состоялась в Северодвинске 15 сентября 1955 года. В это время в Вашингтоне уже готовилась программа создания атомных подводных лодок с баллистическими ракетами (ПЛАРБ). Строилась советская субмарина – «Ленинский комсомол» – также дольше американской, она вступила в строй лишь в 1958 году. В Северодвинске в 1958-1964 годах, кроме опытной АПЛ, было построено и передано флоту 12 серийных многоцелевых АПЛ проекта 627А («Кит» по классификации НАТО).

Как свидетельствуют специалисты, первые советские атомные лодки, имея вдвое более мощную ядерную энергетическую установку и лучшие скоростные качества, чем у американских АПЛ, значительно уступали им в скрытности. Советские конструкторы, в отличие от американских, решили первые АПЛ строить с двумя энергетическими установками. Они имели два реактора и являлись двухвальными, так как их предполагалось использовать на Севере. Так или иначе, гонка подводных ядерных вооружений перешла в практическую плоскость.

Здесь уместно сделать одно отступление. В конечном счете строительство стратегического флота СССР и США свелось к следующей формуле – создание атомных подводных лодок и установка на них баллистических и крылатых ракет.

СССР форсировал строительство атомных подлодок. И все же отставание от Соединенных Штатов в начале 1960-х было значительным. В ноябре 1960 года на патрулирование в океан вышла первая американская ПЛАРБ «Джордж Вашингтон». Она несла на своем борту 16 баллистических ракет «Поларис A1» с дальностью стрельбы 2200 километров.

К середине 1965 года в составе ВМС США было около тридцати ПЛАРБ типа «Джордж Вашингтон», «Итен Аллен» и «Лафайетт», на вооружении которых находились ракеты «Поларис» трех модификаций. До 1976 года США господствовали в области морских стратегических вооружений, имея преимущество в количестве и качестве АПЛ, в баллистических ракетах для них.

Владимир Здорнов в журнале «Техника и вооружение» пишет:

«Ответные шаги делает Советский Союз, предпринимая настойчивые усилия к достижению паритета на море в стратегическом звене. В 1967-м судостроительная промышленность передала флоту головные АПЛ нового поколения трех классов (стратегическую, ударную, многоцелевую). Особенно ярко усилия советских конструкторов и судостроителей воплотились в создании ракетного подводного крейсера стратегического назначения (РПКСН) проекта 667А ("Навага") – головной корабль в состав флота вступил в том же 1967-м. Он нес на борту 16 ракет РСМ-25, а потому стал на то время самым крупным (водоизмещение порядка 10 тысяч тонн) из отечественных субмарин. Его навигационные средства обеспечивали уверенное плавание и применение ракет в приполюсных районах. Новый ракетный комплекс Д-5, установленный на крейсере, по сути представлял из себя новое поколение морского баллистического ракетного оружия. Он обеспечивал автоматическую предстартовую подготовку ракет, а данные для стрельбы вырабатывались специализированной ЭВМ. Ракета поражала цели на расстоянии 2500 километров.

СССР начал догонять США. И тогда ответный шаг делает Вашингтон. В состав ВМС в начале семидесятых годов стали поступать новые подводные атомные лодки с баллистическими ракетами типа «Лафайет» и "Джеймс Медисон", вооруженные ракетами «Посейдон» с разделяющимися головными частями, дальность стрельбы которыми достигала 4600 километров, а головная часть обладала уже 14 боезарядами по 40 Кт, ПЛАРБ прежних серий "Джордж Вашингтон" и "Итен Аллен" были перевооружены – на их борту были установлены ракеты "Поларис A3". Американцы теперь могли наносить ядерные удары по Москве, другим административным и промышленным центрам СССР из Средиземного моря, Северной Атлантики, Северного Ледовитого океана.

Не оставшись в долгу, СССР первым в мире создает РПКСН – проект 667Б ("Мурена") – с межконтинентальной баллистической ракетой, их на борту 12. Головной корабль вступил в строй в 1972 году. Ракета РСМ-40, установленная на нем, обладала гораздо большей, чем у указанных американских ракет, дальностью стрельбы и равнялась той, что закладывалась в разрабатываемую в США в то время ракету нового поколения "Трайдент-1"»

В начале 1980-х СССР и США вступили в новый этап ядерного подводного противостояния, на верфи супердержав были заложены подводные атомоходы третьего поколения. Впервые морские стратегические системы с сопоставимыми характеристиками Москва и Вашингтон ввели почти одновременно. В 1981 году в состав советского ВМФ вошел головной подводный ракетоносец системы проекта 941 «Акула», известный сейчас под название «Тайфун», а в состав военно-морских сил США – суперсубмарины «Огайо». Всего в 1981-1989 годах в Северодвинске было построено шесть подлодок проекта 941.

Что же представляет российский ракетный подводный крейсер стратегического назначения «Тайфун»?

Его длина – 175 метров, ширина – 25 метров, а высота вместе с рубкой без выдвижных устройств – 26 метров. Полное водоизмещение «Тайфуна» составляет 33800 тонн. Это самый крупный подводный корабль мира. Рекорд, видимо, навсегда останется за «Тайфуном»

Примерно таких же размеров американская субмарина «Огайо», в противовес которой строился «Тайфун». Но между ними и большие отличия. «Огайо» – однокорпусная. Внутри же стальной оболочки «Тайфуна» два особо прочных титановых корпуса диаметром по десять метров. Безусловно, и это повлияло на водоизмещение. Энергией корабль обеспечивают два водо-водных ядерных реактора мощностью 190 мегаватт. Экипаж (их два) – около 170 человек.

Ракетоносец типа «Тайфун» способен нанести ядерный удар, в двадцать тысяч раз превышающий по мощности атомную бомбу, сброшенную на Хиросиму. Его ракеты и боеголовки могут стереть с лица земли двести городов.

«Тайфун» – самый малошумный, по сравнению со своими российскими предшественниками корабль и не уступает по этому важному показателю субмаринам США.

В 1995 году конгресс США, ознакомившись с подготовленным военной разведкой докладом, был шокирован: оказалось, что производимые в России многоцелевые атомные подводные лодки улучшенного типа «Тайфун» по малошумности превосходят разрабатываемые в США на основе ПЛА типа «Лос-Анджелес» проекты новых подводных лодок. Данный факт говорит о том, что Россия все еще сохраняет лидирующее положение в этой области.

Какие же требования будут предъявляться к подводным лодкам в ближайшем будущем?

В современных условиях только малошумные подводные лодки способны скрытно перемещаться в заданные районы и только их гидроакустические средства позволяют обнаружить противника на больших расстояниях и тем самым дают возможность своевременно применять оружие или уклоняться от столкновения.

В общих чертах прогнозирует некоторые главные особенности развития этого вида вооружения генеральный конструктор и начальник ЦКБ МТ «Рубин» Игорь Спасский:

«…Для повышения величины малошумной скорости предпочтительнее применение однокорпусного исполнения основной части длины подводной лодки. При этом необходимо находить разумный компромисс для обеспечения максимально возможных требований по непотопляемости, что определит целесообразность запаса плавучести объемом порядка 15 процентов. (Напомню, что подводные лодки России в среднем имеют запас плавучести около 25 процентов, а США – около 10 процентов.)

Подводные лодки, как правило, будут одновальными с целью значительного уменьшения шумности на больших скоростях и повышения экономичности. Это будет несколько снижать живучесть подводной лодки, что имеет особое значение для безопасного плавания в арктических условиях подо льдом. Поэтому потребуются надежные резервные средства движения, типа откидных или выдвижных движительных колонок, или иные конструктивные решения, не нарушающие плавность обводов корпуса.

По совокупности многих качеств при проектировании главных движителей более широкое применение найдут водометные принципы.

…Дополнительно должны быть исследованы все «за» и «против» в традиционно принятых конструкциях и формах ограждения рубки… Целесообразнее вообще не иметь ограждения рубки, но это будет возможно только при создании принципиально новых конструкций радиосвязных и радиолокационных антенных, а также перископных систем (оптиковолоконные всплывающие оконечные устройства) и телескопических шахт подачи воздуха для работы двигателя под водой. По-видимому, это можно будет реализовать за счет некоторого плавного приполнения надстройки и, например, выдвижного (из прочной шахты) ходового мостика для вахты в надводном положении. Реализация изложенных принципов будет возможна в не очень близком будущем.

У России большой опыт строительства атомных ПЛ из титановых сплавов (построено 8 единиц). Применение этого материала для корпуса лодок открывает дорогу к увеличению глубины погружения и резкому снижению магнитного поля, уменьшает эксплуатационные расходы на содержание корпуса, но пока еще ощутимо отражается на стоимостных показателях. И в серийном производстве ПЛ титан в обозримом будущем не будет применяться, за исключением единичных подводных объектов различных специальных назначений.

…Облик баллистических ракет стратегического назначения и их количество на атомных лодках во многом диктуются международными соглашениями по ограничению этого вида оружия. Тенденция к резкому снижению массо-габаритных характеристик ракет однозначна и будет определяться разумным сочетанием количества и мощности разделяющихся боеголовок, а также, как правило, исключением ряда сверхвиртуозных задач, возлагаемых ранее на эти ракеты.

…Прогресс в развитии радиоэлектронного вооружения в основном может быть достигнут за счет совершенствования электроники (сверхминиатюризация) и методов обработки сигналов. Широкое применение найдет оптиковолоконная техника.

Управление вооружением и техническими средствами ПЛ будет развиваться в направлении создания интегрированной (обеспечивающей все нужды подводной лодки) системы с единой информационной шиной и с распределенными (но имеющими возможность объединять свои усилия) средствами информации и обработки на основе стандартных кодовых языков. В средствах внешнего целеуказания высшую приоритетность, вероятно, получат разнопрофильные сдублированные космические системы».

Кроме улучшения конструкции корпуса подводных лодок важным направлением является разработка новых высокопрочных сталей и других конструкционных материалов; применение неметаллических конструкционных материалов, обладающие малой плотностью, сравнительно высокой механической прочностью, антикоррозийной стойкостью, немагнитностью и т п. Изготовление прочных корпусов подводных лодок из материалов, основанных на стеклопластике, возможно уже в настоящее время.

Развитие гидроакустических средств будет происходить по нескольким направлениям. Прежде всего, это увеличение их дальности действия. Кроме этого, автоматизируются процессы обработки гидроакустической информации, станет автоматическим сопровождение обнаруженной цели, использование гидроакустических средств для управления оружием.

Еще одним средством, которое позволяет командиру подводной лодки получить необходимую информацию, был и остается перископ. Современный оптический перископ в наше время представляет собой сложный комплекс оптико-электронных датчиков и устройств, аппаратуры ночного видения и радиолокационной станции.

Навигационная аппаратура подводных лодок совершенствуется, предполагается использовать искусственные спутники Земли, а также применять в инерциальных системах счисления пути высокоточные криогенные структуры, работающие при близких к абсолютному нулю температурах.

В целях снижения вероятности обнаружения при передаче информации необходимо уменьшать время активной работы передатчика до минимума. Для этого создаются различные быстродействующие радиоустройства и приставки к передатчикам, позволяющие «сжимать» информацию и значительно увеличивать скорость ее передачи. При этом время передачи радиограмм средней длины сокращается до секунд и даже долей секунды.

Несмотря на широкое внедрение ракет, торпеда сохраняет свое значение как эффективное средство поражения морских целей.

Перспективным направлением является разработка ракето-торпед, которые первую и последнюю часть пути проходят под водой, как обычные торпеды, а среднюю, основную часть – по воздуху, как крылатые ракеты. Этот метод одновременно является и наиболее перспективным путем увеличения дальности действия торпед.

Российская ракето-торпеда «Шквал», по общему признанию ведущих военных экспертов мира, сегодня не имеет аналогов, хотя она уже 23 года находится на вооружении ВМФ. Более того, в конце 1970-х годов ученые Пентагона, занимавшиеся проблемами больших скоростей под водой, пришли к выводу, что подобное изобретение… технически невозможно. После чего американские военные со спокойной совестью стали рассматривать информацию о подобных разработках, поступавшую по каналам разведки, как обыкновенную «дезу» и очередной блеф противников. В СССР же шли финальные испытания ракеты.

Из книги 100 великих кораблекрушений автора Муромов Игорь

ПОДВОДНЫЕ ЛОДКИ K-4 и K-17 31 января 1918 года За одну ночь британский подводный флот лишился сразу пяти подводных лодок, причем две из них погибли. Катастрофа унесла жизни 115 офицеров и матросов.Крупнейшая в истории подводного плавания катастрофа произошла 31 января 1918 года,

Из книги Американские подводные лодки от начала XX века до Второй Мировой войны автора Кащеев Л Б

Из книги Советские атомные подводные лодки автора Гагин Владимир Владимирович

Из книги Авиация Красной армии автора Козырев Михаил Егорович

РАКЕТНЫЕ АТОМНЫЕ ПОДВОДНЫЕ ЛОДКИ Использование подводных лодок в качестве носителей баллистических ракет началось в СССР с 1955 года, когда было переоборудовано 6 дизельных подводных лодок класса «Зулу-5» с монтажем вертикальных пусковых установок для двух ракет ССН-4

Из книги Спецназ ГРУ: самая полная энциклопедия автора Колпакиди Александр Иванович

УДАРНЫЕ АТОМНЫЕ ПОДВОДНЫЕ ЛОДКИ Первые крылатые ракеты на подводных лодках начали устанавливать в США еще с 1948 года. Это были V-1 (ФАУ-1) немецкой разработки. В СССР первый опыт относится к 1958 году, когда на дизельных лодках класса «Виски» установили поверх корпуса за рубкой

Из книги Владивосток автора Хисамутдинов Амир Александрович

ТОРПЕДНЫЕ АТОМНЫЕ ПОДВОДНЫЕ ЛОДКИ Подводные лодки с самого начала своего развития были атакующими, торпедными. Первая атомная лодка ВМФ СССР («Ленинский комсомол) и ВМС США («Наутилус») были также чисто торпедными. В настоящее время торпедные лодки с получением нового,

Из книги Контрабанда и контрабандисты [Наркотики, антиквариат, оружие] автора Ревяко Татьяна Ивановна

13 САМОЛЕТЫ ДЛЯ подводных лодок И ЛЕТАЮЩИЕ ПОДВОДНЫЕ ЛОДКИ Идея использовать гидросамолеты с подводных лодок впервые возникла у немцев во время Первой мировой войны. В 1915 г. самолет FF 29, установленный поперек палубы в носовой части подводной лодки U-12, был доставлен к

Из книги Боевые корабли японского флота 10.1918-8.1945 гг. Подводные лодки автора Апальков Юрий Валентинович

Из книги автора

ВЛАДИВОСТОКСКИЕ ПОДВОДНЫЕ ЛОДКИ И МЕДАЛЬНЫЕ ИСТОРИИ, ИЛИ ДАР ВАСИ-ПОДВОДНИКА Владивосток издавна был базой подводного флота, а первые подводные лодки появились здесь еще во время Русско-японской войны. Подводные лодки, построенные на отечественных или иностранных

Из книги автора

У КОНТРАБАНДИСТОВ ЕСТЬ ДАЖЕ ПОДВОДНЫЕ ЛОДКИ Колумбийские власти с интересом изучают миниатюрную подводную лодку, захваченную у северного побережья страны. Специалисты не сомневаются в том, что эта техническая новинка была предназначена для совершенно определенной и

Из книги автора

А. Подводные лодки серий Ro постройки 1918–1922 гг Типа F1 1 2 3 4 5 6 7 Ro–1 с. в. ф. "Кавасаки", Кобе ноябрь 1918 г. 28.07.1919 г. 31.03.1920 г. 65,6?6,0?4,2 т 717 (689)/1047 т Ro-2 с. в. ф. "Кавасаки", Кобе ноябрь 1918 г. 22.11.1919 г. 20.04.1920 г. А. № 18 (Ro-1) заказана в рамках Программы нового кораблестроения 1915 г. и № 21

Из книги автора

Из книги автора

Д. Транспортные подводные лодки флота Типа D1 1 2 З 4 5 6 7 I-361 верфь флота, Куре февраль 1943 г. октябрь 1943 г. 25.05.1944 г. 75,5?8,9?4,7/5,8 (18 мм) 1779 (1440)/2215 т I-362 с. в. ф. "Мицубиси", Кобе март 1943 г. ноябрь 1943 г. 23 05.1944 г. I-363 верфь флота, Куре апрель 1943 г. январь 1944 г. 8.07.1944 г. I-364 с. в. ф.

Из книги автора

Е. Транспортные подводные лодки армии Типа YU-1 1 2 3-5 6 7 с YU-1 по YU-12 с. в. ф. "Хитачи" (Судостроитenьная кампания "Kacaдo"), Кудамацу с октября 1943 г. по июнь 1944 г. 40,85?4,1?2,8 273/370 т А. Работы над созданием транспортной лодки армия начала в середине 1943 г. Корабли данного типа

Из книги автора

Ж. Подводные лодки иностранной постройки Типа IXD2 Индекс Индекс (название) страны-изготовителя корабля Место постройки Дата Дата вступления в строй Дата вступления в состав Японского флота Главные размерения Водоизмещение 1 2 3 4 5 6 7 8 I-501 U 181 (Германия) с. в. ф. "Deschimag",


АПЛ пр. 971 (шифр «Барс») разработана в СПМБМ «Малахит» под руководством Г.Н. Чернышова. Относится к ПЛА третьего поколения и является в полном смысле этого слова многоцелевой. Она предназначена для поиска, обнаружения и слежения за ПЛАРБ и АУГ противника, их уничтожения с началом боевых действий, а также нанесения ударов по береговым объектам. При необходимости лодка может нести мины.

Атомная подводная лодка К-335 «Гепард» — видео

Первоначально АПЛ пр. 971 рассматривалась как «стальной» аналог титановой атомной подводной лодки пр. 945, предназначавшийся для увеличения темпов постройки ПЛА третьего поколения. Однако СПМБМ «Малахит», имея большой опыт проектирования многоцелевых лодок, на базе вооружения, механизмов и оборудования, созданных для пр. 945, разработало, по-существу, новый корабль третьего поколения. Самые малошумные отечественные АПЛ По мнению специалистов, по уровню физических полей сопоставимы с такими кораблями, как АПЛ ВМС США Seawolf.
АПЛ пр. 971 является двухкорпусной и имеет «лимузинное» ограждение выдвижных устройств, а также высокое кормовое оперение, на котором расположен обтекатель для буксируемой антенны ГАК. Прочный корпус выполнен из высокопрочной стали с высоким пределом текучести (100 кгс/мм2) и делится прочными переборками на шесть отсеков.


Все основное оборудование и боевые посты АПЛ пр. 971 размещены на амортизаторах в зональных блоках, представляющих собой пространственные каркасные конструкции с палубами. Зональные блоки изолированы от корпуса лодки резинокордными пневматическими амортизаторами. Благодаря использованию зональных блоков удалось существенно уменьшить уровень акустического поля, обезопасить экипаж и оборудование от динамических нагрузок, а также рационализировать технологию постройки корабля. В частности, монтаж оборудования и систем осуществлялся в цехе в зональном блоке, который затем заводился в обечайку отсека. Легкий корпус и наружная поверхность прочного корпуса облицованы единым резиновым противогидролокационным и шумопоглощающим покрытием.
Корабль имеет традиционное двухрядное расположение ТА. В носовом отсеке расположены стеллажи для хранения боезапаса с устройствами продольной, поперечной подач» и УБЗ. Под ТА находится выгородка с основной антенной ГАК. В ограждении рубки и выдвижных устройств размещаются некоторые из антенн ГАК и ВСК на весь экипаж.


Легкому корпусу приданы формы, оптимальные для подводного хода. Все отверстия и вырезы на нем закрываются обтекателями. На ПЛА пр. 97/ удалось реализовать комплексную автоматизацию боевых и технических средств, сосредоточить управление кораблем, его оружием и вооружением в ГКП. Все это позволило сократить экипаж до 73 человек. Начиная с К-263, на лодках пр. 97/ устанавливается СОКС, а с К-391- в надстройке ПУ для запуска средств комплекса гидроакустического противодействия, аварийная система порохового продувания ЦГБ (пороховые генераторы) и аварийные силовые сети.
Одновременно с постройкой кораблей данного типа осуществляется программа их модернизации, направленная на совершенствование акустических характеристик и расширение боевых возможностей. В частности, К-157 и К-335 при сохранении прежних обводов имеют вставку миной несколько метров для установки нового оборудования.
Первоначально предполагалось построить 20 ПЛА пр. 971. Зав. № 520 и зав. № 521, заложенные соответственно в 1990 и 1991 гт. на ССЗ им. Ленинского комсомола, 18.03.1992 г. исключили из списков флота. На этот момент они имели техническую готовность соответственно 25 и 12%. Задел оборудования и механизмов продолжает сохраняться на заводе-строителе.

По состоянию на декабрь 2001 г. в составе флота находились 13 ПЛА пр. 971.

Атомная подводная лодка К-480 «Барс» (зав. № 821, с 24.07.1991 г., с 13.10.1997 г. «Ак-Барс» СМП (г. Северодвинск): 22.02.1985 г.; 16.04.1988 г.; 31.12.1988 г. Входила в состав СФ и несла боевую службу в Атлантическом океане и Средиземном море. 06.04.1990 г. лодка совершила глубоководное погружение на предельную глубину. В 1998 г. ее исключили из боевого состава флота, передали ОРВИ на долговременное хранение и в пос. Гаджиево поставили на отстой.


Атомная подводная лодка К-317 «Пантера» (зав. № 822, с 10.10.1990). СМП (г.Северодвинск): 06.11.1986 г.; 21.05.1990 г.; 30.12.1990 г. Входит в состав СФ. В сентябре 1999 г. на СМП поставлена в средний ремонт.


К-401 «Волк» (зав. № 831, с 26.07.1991 г). СМП (г. Северодвинск): 14.11.1987 г.; 11.06.1991 г.; 29.12.1991 г. Входит в состав СФ. Выполнила две автономные боевые службы. С декабря 1995 г. по февраль 1996 г. в Средиземном море лодка осуществляла дальнее противолодочное прикрытие авианосной многоцелевой группы во главе с ТАВКР Адмирал флота Советского Союза Кузнецов

К-328 «Леопард» (зав. № 832, с 24.01.1991 г). СМП (г. Северодвинск): 26.10.1988 г.;
28.06.1992г.; 15.12.1992 г. Входит в состав СФ Выполнила четыре автономные боевые службы

К-154 «Тигр» (зав. № 833, с 24.07.1991 г). СМП (г. Северодвинск): 10.09.1989 г.; 26.06.1993 г.; 29.12.1993 г. Входит в состав СФ Выполнила две автономные боевые службы С 1998 по 2002 г. на СМП прошла поддерживающий ремонт.

К-157 «Вепрь» (зав. № 834, с 06.04.1993 г). СМП (г. Северодвинск): 13.07.1990 г.; 10.12.1994 г.; 25.11.1995 г. Входит в состав СФ Выполнила одну автономную боевую службу и одну поисковую операцию.

Атомная подводная лодка К-335 «Гепард» (зав. № 835, с 22.02.1993 г). СМП (г. Северодвинск):23.09.1991 г.; 17.09.1999 г.; 05.12.2001 г. Входит в состав СФ.


К-337 «Кугуар» (зав. № 836, с 25.01.1994 г). СМП (г. Северодвинск): 18.08.1992 г.; Из-за отсутствия финансирования 22.01.1998 г. постройка корабля была приостановлена. Он находится на консервации в одном из цехов СМП. Корпусные конструкции, механизмы и оборудование К-337 предполагается использовать при постройке АПКР пр. 955 (шифр «Борей»).

К-333 «Рысь» (зав. №. 837, с 07.02.1995 г). СМП (г. Северодвинск): 31.08.1993 г. Из-за отсутствия финансирования 06.10.1997 г. постройка корабля была приостановлена. Он находится на консервации в одном из цехов СМП. Корпусные конструкции, механизмы и оборудование К-333 предполагается использовать при постройке АПКР пр. 955 (шифр «Борей»).

К-284 «Акула» (зав. № 501, с 13.04.1993 г). ССЗ им. Ленинского комсомола (г. Комсомольск-на-Амуре): 06.11.1983 г.; 16.06.1984 г.; 30.12.1984 г. Головной корабль пр 971 Входил в состав ТОФ. В 2001 г. был исключен из боевого состава флота и передан ОРВИ на долговременное хранение.

К-263 «Дельфин» (зав. № 502, с 13.04.1993 г). ССЗ им. Ленинского комсомола (г. Комсомольск-на-Амуре): 09.05.1985 г.; 28.05.1986 г.; 30.12.1987 г. Входит в состав ТОФ и несет боевую службу в Тихом океане.

К-322 «Кашалот» (зав. № 513, с 13.04.1993 г. ССЗ им. Ленинского комсомола (г. Комсомольск-на-Амуре): 05.09.1986 г.; 18.07.1987 г.; 30.12.1988 г. Входит в состав ТОФ и несет боевую службу в Тихом океане.

К-391 «Кит», «Братск» с 01.09.1997 г. ССЗ им. Ленинского комсомола (г. Комсомольск-на-Амуре): 23.02.1988 г.; 14.04.1989 г.; 29.12.1989 г. Входит в состав ТОФ и несет боевую службу в Тихом океане.

К-331 «Нарвал» (зав. № 515, с 13.04.1993). ССЗ им. Ленинского комсомола (г. Комсомольск-на-Амуре): 28.12.1989 г.; 23.06.1990 г.; 31.12.1990 г. Входит в состав ТОФ и несет боевую службу в Тихом океане.

К-419 «Морж», «Кузбасс» с 29.01.1998 . ССЗ им. Ленинского комсомола (г. Комсомольск-на-Амуре): 28.07.1991 г.; 18.05.1992 г.; 31.12.1992 г. Входит в состав ТОФ и несет боевую службу в Тихом океане.

Атомная подводная лодка К-295 «Дракон», «Самара» с 30.08.1999. ССЗ им. Ленинского комсомола (г. Комсомольск-на-Амуре): 07.11.1993 г.; 05.08.1994 г; 28.07.1995 г. Входит в состав ТОФ и несет боевую службу в Тихом океане.


Атомная подводная лодка К-152 «Нерпа». «Чакра» (INS Chakra) с 23 января 2012 года, когда официально передана в лизинг в ВМС Индии


Тактико-технические характеристики АПЛ проекта 971 «Щука-Б»

Водоизмещение, т:
- надводное ……………………………………………………………….8 140
- подводное ……………………………………………………………… 10 500
Длина наибольшая, м ……………………………………………………….. 110.3
Ширина корпуса наибольшая, м ………………………………………………… 13,6
Осадка средняя, м …………………………………………………………… 9,68
Архитектурно-конструктивный тип ………………двухкорпусный
Глубина погружения, м:
- рабочая……………………………………………………………………. 480
- предельная…………………………………………………………………. 600
Автономность по запасам провизии, сут…………………………………………….100
Экипаж, чел…………………………………………………………………….73
Энергетическая установка:
Главные механизмы.
- тип………………………………………………………………………….АЭУ
- ППУ:
— марка………………………………………………………..ОК-9ВМ или ОК-650М.01
- количество х тип ЯР………………………………………………………..1 х ВВР
- тепловая мощность ЯР, МВт……………………………………………………190
— ПТУ:
- тип………………………………………………………………….блочная
- количество х мощность ГТЗА, л. с …………………………………………1 х 50 000
- количество х мощность АТГ, кВт…………………………………………….2 х 3 200
— количество х тип движителей ……………………………….. 1 х малошумный ВФШ
Резервные источники энергии и средства движения
- количество х мощность ДГ, кВт……………………………………………1 х 800
- аккумуляторная установка:
- тип АБ…………………………………………………………свинцово-кислотная
- количество х тип РСД ……………………………………………..2 х ВПК
- привод ВПК х мощность, кВт……………………………………………..ЭД х 300
Скорость хода наибольшая, уз:
— надводная………………………………………………………………..10
- подводная………………………………………………………………..33
Вооружение:
Ракетное:
- тип ракетного комплекса………………………………………………….«Гранат»
— тип КРСН………………………………………………………………РК-55
- вид старта………………………………………………..подводный, из 533-мм ТА
- тип ПЗРК……………………………………………………………. «Стрела-ЗМ»
- количество контейнеров для хранения ЗР…………………………………3
- боекомплект ЗР……………………………………………………………….18
Торпедное.
— количество х калибр ТА, мм……………………………………………4 х 650
- боезапас (тип) торпед…………………………………..12 (торпеды 65-76 или ПЛУР
…………………………………………………………..86Р и 88Р ПАРК «Ветер»)
- количество х калибр ТА, мм …………………………………………..4 х 533
— боезапас (тип) торпед и ПЛУР….28 (торпеды УСЭТ-80 или ПЛУР 83Р и 84Р ПАРК «Водопад», или М5 ПАРК «Шквал»)
- система подготовки ТА ………………………………………… «Гринда»
Радиоэлектронное:
- БИУС ………………………………………………………..«Омнибус»
- НК……………………………………………………………..«Симфония»
- КСС……………………………………………………………..«Молния-МЦ»
- система СС…………………………………………………..«Цунами-БМ»
— ГАК……………………………….«Скат-3» (МГК-540)

Этот раздел посвящен подводному флоту – одному из самых важных составляющих современных военно-морских сил любой страны. Подводные лодки – это корабли, которые могут наносить удары по врагу прямо из морских пучин, при этом оставаясь практически неуязвимыми для противника. Главным оружием любой подлодки является ее скрытность.

Первое боевое применение подводной лодки произошло еще в середине XIX века. Однако массовым видом оружия субмарины стали только в начале прошлого столетия. Во время Первой мировой войны немецкие подлодки превратились в грозную силу, которая произвела настоящее опустошение на морских коммуникациях союзников. Не менее эффективно действовали подводные лодки и во время следующего глобального конфликта — Второй Мировой войны.

Могущество подводного флота многократно возросло с началом атомной эры. Субмарины получили ядерные силовые установки, что превратило их в настоящих хозяев морских глубин. Атомная подводная лодка может месяцами не появляться на поверхности, развивать под водой небывалую скорость, нести на борту смертоносный арсенал.

Во времена Холодной войны субмарины превратились в подводные стартовые площадки для баллистических ракет, способные одним залпом уничтожать целые страны. Многие десятилетия в морских глубинах шло напряженное противостояние между подводными флотами США и СССР, которое не один раз приводило мир на грань глобальной ядерной катастрофы.

Подводные лодки и сегодня являются одним из наиболее перспективных видов вооружения военно-морского флота. Разработки новых судов ведутся во всех ведущих мировых державах. Российская конструкторская школа подводного кораблестроения считается одной из лучших в мире. Данный раздел расскажет вам много примечательного про подводные лодки России, а также о перспективных разработках отечественных корабелов.

Не менее интересными являются и зарубежные работы в этой области. Мы расскажем вам про подводные лодки мира, которые эксплуатируются в настоящее время и о самых знаменитых подводных кораблях прошлого. Не меньший интерес представляют и основные тенденции развития субмарин, и перспективные проекты подлодок разных стран.

Современная боевая субмарина – это настоящий шедевр конструкторской мысли, который по своей сложности мало чем уступает космическому кораблю.

Подводные лодки, стоящие в наши дни на вооружении сильнейших флотов мира, могут не только уничтожать военные или транспортные корабли противника, они также способны наносить удары по военным или административным центрам противника, расположенным в сотнях километров от морского берега.

Для поражения целей они могут использовать не только баллистические ракеты с ядерной боевой частью, но и крылатые ракеты с обычным взрывчатым веществом. Современные подводные лодки способны вести разведку, устанавливать мины, высаживать на вражеский берег диверсионные группы.

Субмарины последних поколений очень тяжело обнаружить, их шумность обычно меньше фонового шума океана. Ядерный реактор позволяет современным подлодкам не всплывать на поверхность длительное время и развивать под водой значительную скорость. В будущем, как ожидается, боевые подводные корабли будут становиться практически необитаемыми, функции экипажа все чаще будет выполнять автоматика, контролируемая сложными вычислительными системами.

К одним из самых больших в мире атомных подводных лодок можно с уверенностью отнести тяжёлые ракетные подводные крейсера стратегического назначения проекта 941 «Акула». Классификация НАТО – SSBN «Typhoon». В 1972 году после получения задания, в ЦКМБМТ «Рубин», приступили к разработке данного проекта.

История создания

В декабре 1972 года было выдано тактико-техническое задание на проектирование, С.Н. Ковалев был назначен главным конструктором проекта. Разработка и создание нового типа подводных крейсеров позиционировалось как ответ на строительство ПЛАРБ типа «Огайо» в США. На вооружении планировалось использовать твердотопливные трехступенчатые межконтинентальные баллистические ракеты Р-39 (РСМ-52), габариты этих ракет и обусловили размеры нового корабля. Если сравнивать с ракетами «Трайдент-I», которыми оснащены ПЛАРБ типа «Огайо», то ракета Р-39 обладает значительно лучшими характеристиками в дальности полета, забрасываемой массы и имеет 10 блоков, в то время как у «Трайдента» таких блоков 8. Но при этом Р-39 значительно превосходит размерами, она почти вдвое длиннее, и имеет массу втрое больше американского аналога. Компоновка РПКСН по стандартной схеме не подходила для размещения ракет столь большого размера. Решение о начале работ по строительству и проектированию стратегических ракетоносцев нового поколения было принято 19 декабря 1973 года.

В июне 1976 года на предприятии «Севмаш» была заложена первая лодка этого типа ТК-208, которая спущена на воду 23 сентября 1980 года (аббревиатура ТК означает «тяжелый крейсер»). Изображение акулы было нанесено в носовой части, ниже ватерлинии, перед спуском лодки на воду, позже на форме экипажа появились нашивки с акулой. 4 июля 1981 года головной крейсер вышел на морские испытания, на месяц ранее американской ПЛАРБ «Огайо», проект которой был запущен раньше. 12 декабря 1981 года вступила в строй ТК-208. В период с 1981 по 1989 год введено в строй и спущено на воду 6 лодок типа «Акула». Седьмой корабль данной серии так и не был заложен.

Более 1000 предприятий бывшего Союза обеспечивало строительство подводных лодок данного типа. 1219 сотрудников «Севмаша», участвовавших в создании корабля были награждены правительственными наградами.

Заявление о создании лодок серии «Акула» прозвучало на XXVI съезде КПСС от Брежнева, который заявил: У нас имеется система «Тайфун», аналогичная новой американской подводной лодке «Огайо» вооруженную ракетами «Трайдент-I». «Тайфуном» новая лодка «Акула» была названа умышленно, на тот момент холодная война еще не была окончена, для введения противника в заблуждение и прозвучало название «Тайфун».

В 1986 году был построен дизель-электрический транспорт-ракетовоз, водоизмещение которого составляло 16 000 тонн, количество принимаемых ракет на борт 16 БРПЛ. Транспорт получил название «Александр Брыкин» и был предназначен для обеспечения перезарядки ракетами и торпедами.

Длительный высокоширотный поход в Арктику был осуществлен в 1987 году лодкой ТК-17 «Симбирск». Во время этого похода была произведена неоднократная замена экипажей.

На ТК-17 «Архангельск» при проведении учебного пуска в шахте взорвалась и сгорела учебная ракета, пуски проводились в Белом море 27 сентября 1991 года. При взрыве сорвало крышку ракетной шахты и выброшена в море боевая часть ракеты. После этого инцидента лодка встала на небольшой ремонт, экипаж при взрыве не пострадал.

«Одновременный» пуск 20 ракет Р-39 прошел на испытаниях проводимых Северным флотом в 1998 году.

Особенности конструкции

Энергетическая установка на лодках данного типа выполнена в виде двух независимых эшелонов, которые расположены в прочных корпусах, корпуса эти разные. Для контроля состояния реакторов используется импульсная аппаратура, на случай потери электроснабжения реакторы оснащены системой автоматического гашения.

Еще на стадии проектирования в техническое задание был включен пункт о необходимости обеспечения безопасного радиуса, в связи с этим проведена разработка и ряд экспериментов, в опытных отсеках, методов расчета динамической прочности наиболее сложных узлов корпуса (крепление модулей, всплывающих камер и контейнеров, межкорпусные связи).

Так как стандартные цеха не подходили для постройки лодок типа «Акула», пришлось возводить новый цех за номером 55 на «Севмаше», который в настоящее время является одним из самых больших крытых эллингов в мире.

Подводные лодки типа «Акула» обладают достаточно большим запасом плавучести 40%. За то что половина водоизмещения на лодках этого типа приходится на балластную воду, они получили неофициальное название на флоте — «водовоз», еще одно неофициальное название «победа техники над здравым смыслом» было присвоено лодке в конкурирующем КБ «Малахит». Существенной причиной повлиявшей на принятие такого решения было требование обеспечить наименьшую осадку корабля. Данное требование было вполне обоснованно получением возможности использования уже существующих ремонтных баз и пирсов.

Именно большой запас плавучести вместе с достаточно прочной рубкой дают возможность проломать лед, толщина которого составляет до 2,5 метров, это позволяет вести боевое дежурство в северных широтах практически до северного полюса.

Корпус

Одной из особенностей конструкции лодки является наличие пяти обитаемых прочных корпусов внутри легкого корпуса. Два из которых, основные, их наибольший диаметр составляет 10 метров, расположены по принципу катамарана – параллельно друг другу. Ракетные шахты с ракетными комплексами Д-19 находятся в передней части корабля, между главными прочными корпусами.

Помимо этого, лодка оснащена тремя герметичными отсеками: торпедный отсек, отсек модуля управления с центральным постом и кормовой механический отсек. Такое размещение трех отсеков между основными корпусами лодки существенным образом повышает пожаробезопасность и живучесть лодки. Согласно мнению генерального конструктора С.Н. Ковалева:

«Произошедшее на «Курске» (проект 949А), на подводных лодках проекта 941, не могло привести к таким катастрофическим последствиям. Торпедный отсек на «Акуле» выполнен в виде отдельного модуля. В случае взрыва торпеды не могло произойти разрушения нескольких основных отсеков и гибели всего экипажа.»

Главное корпуса соединяются между собой тремя переходами: в носу, в центре и в корме. Переходы проходят через промежуточные отсеки капсулы. Количество водонепроницаемых отсеков на лодке – 19. Спасательные камеры, размещенные у основания рубки под ограждением выдвижных устройств, способны вместить весь экипаж. Количество спасательных камер -2.

Изготовление прочных корпусов осуществлялось из титановых сплавов, легкий корпус – стальной и имеет нерезонансное противолокационное и звукоизолирующее покрытие, вес которого составляет 800 тонн. Американские специалисты считают, что звукоизолирующим покрытием снабжены так же прочные корпуса лодки.

На корабле установлено развитое крестообразное кормовое оперение с горизонтальными рулями, которое имеет размещение непосредственно за винтами. Убирающимися выполнены передние горизонтальные рули.

Для осуществления возможности несения дежурства в северных широтах, ограждение рубки изготовлено очень прочным, имеющим способность проломать лед, толщина которого составляет от 2 до 2,5 метров (в зимний период толщина льда в Северном ледовитом океане может быть от 1,2 до 2 метров, иногда достигает 2,5 метров). Снизу поверхность льда составляют наросты в виде сосулек или сталактитов имеющих довольно большие размеры. Во время всплытия на лодке убираются носовые рули, а сама она прижимается к ледяному слою специально приспособленным для этого носом и рубкой, затем осуществляется резкий продув цистерны главного балласта.

Силовая установка

Проектирование главной ядерной энергетической установки осуществлено по блочному принципу. В главную установку входят два водо-водяных реактора на тепловых нейтронах ОК-650 тепловая мощность которых на валу составляет 2х50 000 л.с. а так же в обоих прочных корпусах расположены две паротурбинные установки, это значительным образом повышает живучесть лодки.

На лодках проекта «Акула» применяется двухкаскадная система резинокордной пневматической амортизации и блочная система механизмов и оборудования, что позволяет значительным образом улучшить виброизоляцию узлов и агрегатов, и таким образом снизить шумность лодки.

В качестве движителей используются два низкооборотных малошумных семилопастных гребных винта фиксированного шага. Для снижения уровня шума винты находятся в кольцевых обтекателях (фенестронах).

Система резервного средства движения включает в себя два электродвигателя постоянного тока по 190 кВт. При маневрировании в стесненных условиях на лодке используются подруливающее устройство, представляющее из себя две откидные колонки с электродвигателями по 750 кВт и поворотными гребными винтами. Эти устройства размещаются в носовой и кормовой части корабля.

Размещение экипажа

Размещение экипажа осуществляется в условиях повышенной комфортности. На подводных лодках проекта «Акула» предусмотрен салон для отдыха экипажа, плавательный бассейн размерами 4х2 метра глубина которого 2 метра, бассейн заполняется пресной либо соленой забортной водой с возможностью подогрева, спортзал, солярий, сауна, а так же «живой уголок». Размещение рядового состава происходит в маломестных кубриках, командный состав размещен в двух либо четырехместных каютах обеспеченных умывальниками, телевизорами и кондиционерами. Кают-компании две: одна для офицеров, а вторая для матросов и мичманов. За условия комфортности созданные на лодке, среди моряков она получила название «плавучий «Хилтон»».

Вооружение

Основным вооружением ТК являются 20 трехступенчатых твердотопливных баллистических ракет Р-39 «Вариант». Стартовая масса данных ракет вместе с пусковым контейнером составляет — 90 тонн, а длинна 17,1 м, это наибольшая стартовая масса из всех принятых на вооружение БРПЛ.

Ракеты имеют разделяющуюся боевую часть на 10 боеголовок с индивидуальным наведением, каждая по 100 килотонн в тротиловом эквиваленте, дальность полета ракет – 8 300 км. В связи с тем, что Р-39 имеют достаточно большие габариты, единственным их носителем являются лодки проекта 941 «Акула».

Испытания ракетного комплекса Д-19 проводились на специально переоборудованной дизельной субмарине К-153 (проект 619), на ней была размещена только одна шахта для Р-39, количество запусков бросковых макетов ограничено семью.

запуск ракеты Р-39 с подводной лодки проекта 941 «Акула»

С лодок проекта «Акула» может быть осуществлен старт всего боекомплекта одним залпом, интервал между стартом ракет минимальный. Запуск ракет можно осуществить из надводного и подводного положения, в случае запуска из подводного положения глубина погружения составляет до 55 метров, ограничения по погодным условиям для запуска ракет нет.

Использование амортизационной ракетно-стартовой системы АРСС позволяет осуществить старт ракеты с помощью порохового аккумулятора давления из сухой шахты, это в значительной мере уменьшает уровень предстартового шума, а так же сокращает интервал между запусками ракет. Одной из особенностей комплекса является подвешивание ракет у горловины шахты при помощи АРСС. На стадии проектирования было предусмотрено размещение боекомплекта из 24 ракет, однако решением главкома ВМФ СССР адмирала С.Г. Горшкова, число ракет было сокращено до 20.

Разработка нового усовершенствованного варианта ракеты Р-39УТТ «Барк» была начата после принятия постановления правительства в 1986 году. На новой модификации ракеты планировалось реализовать систему прохождения через лед, а так же увеличить дальность до 10 000 км. По плану, перевооружить ракетоносцы было необходимо до 2003 года к моменту истечения гарантийного ресурса ракет Р-39. Однако, испытания новых ракет прошли не удачно, после третьего пуска закончившегося провалом, в 1998 году Министерством обороны принято решение о прекращении работ над комплексом, к моменту принятия такого решения готовность комплекса составляла 73%. Разработка другой твердотопливной БРПЛ «Булава» была поручена Московскому институту теплотехники, разработавшему сухопутную МБР «Тополь-М».

Помимо стратегического вооружения, на лодках проекта 941 «Акула» размещено 6 торпедных аппаратов калибра 533 мм, которые могут быть использованы для постановки минных заграждений стрельбы ракето-торпедами и обычными торпедами.

Система противовоздушной обороны обеспечена восемью комплексами ПЗРК «Игла-1».

Лодки проекта «Акула» оснащены радиоэлектронным вооружением следующих типов:

    • «Омнибус» — боевая информационно-управляющая система;
    • аналоговый гидроакустический комплекс «Скат-КС» (на ТК-208 установлен цифровой «Скат-3»);
    • гидроакустическая станция миноискания МГ-519 «Арфа»;
    • эхоледомер МГ-518 «Север»;
    • радиолокационный комплекс МРКП-58 «Буран»;
    • навигационный комплекс «Симфония»;
    • комплекс радиосвязи «Молния-Л1» с системой спутниковой связи «Цунами»;
    • телевизионный комплекс МТК-100;
    • две антенны буйкового типа, позволяют принимать радиосообщения, целеуказания и сигналы спутниковой навигации при нахождении на глубине до 150 м и подо льдами.

Интересные факты
    • Впервые размещение ракетных шахт впереди рубки осуществлено на лодках проекта «Акула»
    • За освоение уникального корабля звание Героя Советского союза было присвоено Командиру первого ракетного крейсера капитану 1 ранга А. В. Ольховникову в 1984 году
    • Корабли проекта «Акула» занесены в книгу рекордов Гинеса
  • Кресло командира в центральном посту находится в неприкосновенности, исключения нет ни для кого, ни для командиров дивизии, флота или флотилии и даже министра обороны.

На заре подводного судостроения, когда шел поиск оптимальных двигателей для субмарин, конструкторы экспериментировали, в том числе, с паросиловыми установками.

После того как в 1930-х годах дизель-электрические подлодки уже перешагнули 20-узловой рубеж, казалось, эра «паровых» субмарин завершилась навсегда. Но прошло всего полтора десятилетия, и о них вновь вспомнили. Разница состояла лишь в том, что пар для турбины должен вырабатывать не привычный котел, сжигающий органическое топливо, а котел атомный.

ФИЗИЧЕСКИЕ ПРИНЦИПЫ РАБОТЫ

В основе работы ядерной энергетической установки лежит управляемая цепная ядерная реакция. Эта реакция представляет собой самоподдерживающийся процесс деления ядер изотопов урана (или делящихся изотопов других элементов) под действием элементарных частиц — нейтронов, которые благодаря отсутствию электрического заряда легко проникают в атомные ядра. При делении ядер образуются новые, более легкие ядра — осколки деления, испускаются нейтроны и освобождается большое количество энергии. Так, деление каждого ядра урана-235 сопровождается освобождением приблизительно 200 мегаэлектроновольт энергии. Из них примерно 83 % приходится на долю кинетической энергии осколков деления, которая в результате торможения осколков преобразуется в основном в тепловую энергию. Остальные 17 % ядерной энергии освобождаются в виде энергии свободных нейтронов и различных видов радиоактивного излучения. Вновь образованные нейтроны в свою очередь участвуют в делении других ядер.

ПЕРВЫЕ ШАГИ

Проработка вопросов создания ядерных силовых установок для подводных лодок началась в США в 1944 году, а уже через четыре года первая из них была спроектирована. Там же в июне 1952 года состоялась закладка первой атомной подводной лодки, получившей имя «Наутилус». На первый взгляд она была само воплощение человеческой мечты об истинной подводной лодке. Действительно, где, как только не в мечтах, можно было себе представить подводный корабль длиной почти 100 м способный более месяца, не всплывая, ходить скоростью более 20 узлов. Но, как это часто бывает, ощутимый качественный скачок в одной области технического прогресса повлек за собой целый букет сопутствующих проблем в смежных. Применительно к атомным силовым установкам — это прежде всего вопросы, связанные с ядерной безопасностью их эксплуатации и последующей утилизацией. Но в начале 1950-х годов об этом просто никто не задумывался.

ОБЩАЯ КОНСТРУКЦИЯ

Основной элемент ядерных энергетических установок — ядерный реактор — специальное устройство, в котором происходит управляемая цепная ядерная реакция. В его состав входят активная зона, отражатель нейтронов, стержни управления и защиты, биологическая защита реактора. Активная зона реактора содержит в себе ядерное горючее и замедлитель нейтронов. В ней протекает управляемая реакция цепного деления ядерного горючего. Ядерное топливо размещается внутри так называемых тепловыделяющих элементов (ТВЭЛ), которые имеют форму цилиндров, стержней, пластин или трубчатых конструкций. Эти элементы образуют решетку, свободное пространство которой заполняется замедлителем. Основными материалами для оболочек тепловыделяющих элементов служат алюминий и цирконий. Нержавеющая сталь применяется в ограниченных количествах и только в реакторах на обогащенном уране, так как сильно поглощает тепловые нейтроны. Для отвода тепла через активную зону прокачивается жидкий теплоноситель.

В энергетических реакторах водо-водяного типа как замедлителем, так и теплоносителем систем является бидистиллят (дважды дистиллированная вода).

Чтобы сделать цепную реакцию возможной, размеры активной зоны реактора должны быть не меньше так называемых критических размеров, при которых эффективный коэффициент размножения равен единице. Критические размеры активной зоны зависят от изотопного состава делящегося вещества (уменьшаются с увеличением обогащения ядерного топлива ураном-235), от количества материалов, поглощающих нейтроны, вида и количества замедлителя, формы активной зоны и т. д. На практике размеры активной зоны назначаются больше критических, чтобы реактор располагал необходимым для нормальной работы запасом реактивности, который постоянно уменьшается и к концу кампании реактора становится равным нулю. Отражатель нейтронов, окружающий активную зону, должен сокращать утечку нейтронов. Он уменьшает критические размеры активной зоны, повышает равномерность нейтронного потока, увеличивает удельную мощность реактора, следовательно, уменьшает размеры реактора и обеспечивает экономию делящихся материалов. Обычно отражатель выполняется из графита, тяжелой воды или бериллия. Стержни управления и защиты содержат в себе материалы, интенсивно поглощающие нейтроны (например, бор, кадмий, гафний). К стержням управления и защиты относятся компенсирующие, регулирующие и аварийные стержни.

ОСНОВНЫЕ РАЗНОВИДНОСТИ

«Наутилус» имел силовую установку с водо-водяным реактором под давлением. Такие реакторы применены и на подавляющем большинстве других атомных субмарин.

В современных атомных установках ядерная энергия превращается в механическую только посредством тепловых циклов. Во всех механических установках атомных подводных лодок рабочим телом цикла является пар. Паровой цикл с промежуточным теплоносителем, передающим теплоту из активной зоны рабочему телу в парогенераторах, приводит к двухконтурной тепловой схеме энергетической установки. Такая тепловая схема с водо-водяным реактором получила самое широкое распространение на атомных подводных лодках. Первому контуру необходима защита, так как при прокачке теплоносителя через активную зону реактора содержащийся в воде кислород становится радиоактивным. Весь второй контур нерадиоактивен.

Для того чтобы получить во втором контуре пар заданных параметров, вода первого контура должна иметь достаточно высокую температуру, превышающую таковую производимого пара. Для исключения вскипания воды в первом контуре в нем необходимо поддерживать соответствующее избыточное давление, обеспечивающее так называемый «недогрев до кипения». Так, в первом контуре зарубежных корабельных ядерных силовых установок поддерживается давление 140-180 атмосфер, которое позволяет нагревать воду контура до 250-280° С. При этом во втором контуре генерируется насыщенный пар давлением 15-20 атмосфер при температуре 200-250° С. На советских подводных лодках первого поколения температура воды в первом контуре составляла 200° С, а параметры пара — 36 атмосфер и 335° С.

С ЖИДКОМЕТАЛЛИЧЕСКИМ ТЕПЛОНОСИТЕЛЕМ

В 1957 году в состав ВМС США вошла вторая атомная подводная лодка «Сивулф». Ее принципиальное отличие от «Наутилуса» заключалось в ядерной силовой установке, где применялся реактор с натрием в качестве теплоносителя. Теоретически это должно было снизить удельную массу установки за счет снижения веса биологической защиты, а главное — повышения параметров пара. Температура плавления натрия, составляющая всего 98° С, и высокая температура кипения — более 800° С, а также отличная теплопроводность, в которой натрий уступает только серебру, меди, золоту и алюминию, делает его очень привлекательным для использования в качестве теплоносителя. Нагревая жидкий натрий в реакторе до высокой температуры, при относительно небольшом давлении в первом контуре — порядка 6 атмосфер, во втором контуре получали пар давлением 40-48 атмосфер с температурой перегрева 410-420°С.

Практика показала, что, несмотря на все преимущества, ядерный реактор с жидкометаллическим теплоносителем обладает рядом существенных недостатков. Чтобы сохранить натрий в расплавленном состоянии, в том числе и в период бездействия установки, на корабле необходимо иметь специальную постоянно действующую систему подогрева жидкометаллического теплоносителя и обеспечения его циркуляции. В противном случае натрий и сплав промежуточного контура «замерзнут» и энергетическая установка будет выведена из строя. В ходе эксплуатации «Сивулфа» обнаружилось, что жидкий натрий химически чрезмерно агрессивен, в результате чего трубопроводы первого контура и парогенератор быстро коррозировали, вплоть до появления свищей. А это очень опасно, так как натрий или его сплав с калием бурно реагируют с водой вплоть до теплового взрыва. Утечка радиоактивного натрия из контура вынудила сначала отключить пароперегревательные секции парогенератора, что привело к снижению мощности установки до 80 %, а потом, через год с небольшим после вступления в строй, и вообще вывести корабль из состава флота. Опыт «Сивулфа» заставил американских военных моряков окончательно сделать выбор в пользу водо-водяных реакторов. А вот в СССР эксперименты с жидкометаллическим теплоносителем продолжались гораздо дольше. Вместо натрия применялся сплав свинца с висмутом — гораздо менее пожаро- и взрывоопасный. В 1963 году вступает в строй подлодка проекта 645 с таким реактором (по сути — модификация первых советских атомных субмарин проекта 627, на которых применялись водо-водяные реакторы).

А в 1970-е годы состав флота пополнили семь подлодок проекта 705 с ядерной силовой установкой на жидкометаллическим носителе и титановым корпусом. Эти субмарины обладали уникальными характеристиками — они могли развивать скорость до 41 узла и погружаться на глубину 700 м. Но эксплуатация их была чрезвычайно дорогой, из-за чего лодки этого проекта прозвали «золотыми рыбками». В дальнейшем ни в СССР, ни в других странах реакторы с жидкометаллическим теплоносителем не применялись, а повсеместно принятыми стали водо-водяные реакторы.